Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 406
Filtrar
1.
Front Microbiol ; 15: 1352586, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596375

RESUMO

Introduction: Melatonin (MEL) is a crucial neuroendocrine hormone primarily produced by the pineal gland. Pinealectomy (PINX) has been performed on an endogenous MEL deficiency model to investigate the functions of pineal MEL and its relationship with various diseases. However, the effect of PINX on the gastrointestinal tract (GIT) MEL levels and gut microbiome in pigs has not been previously reported. Methods: By using a newly established pig PINX model, we detected the levels of MEL in the GIT by liquid chromatography-tandem mass spectrometry. In addition, we examined the effects of PINX on the expression of MEL synthesis enzymes, intestinal histomorphology, and the intestinal barrier. Furthermore, 16S rRNA sequencing was performed to analyze the colonic microbiome. Results: PINX reduced serum MEL levels but did not affect GIT MEL levels. Conversely, MEL supplementation increased MEL levels in the GIT and intestinal contents. Neither PINX nor MEL supplementation had any effect on weight gain, organ coefficient, serum biochemical indexes, or MEL synthetase arylalkylamine N-acetyltransferase (AANAT) expression in the duodenum, ileum, and colon. Furthermore, no significant differences were observed in the intestinal morphology or intestinal mucosal barrier function due to the treatments. Additionally, 16S rRNA sequencing revealed that PINX had no significant impact on the composition of the intestinal microbiota. Nevertheless, MEL supplementation decreased the abundance of Fibrobacterota and increased the abundance of Actinobacteriota, Desulfobacterota, and Chloroflexi. Conclusion: We demonstrated that synthesis of MEL in the GIT is independent of the pineal gland. PINX had no influence on intestinal MEL level and microbiota composition in pigs, while exogenous MEL alters the structure of the gut microbiota.

2.
Lupus Sci Med ; 11(1)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599669

RESUMO

OBJECTIVE: Circadian rhythm disruption (CRD) has been associated with inflammation and immune disorders, but its role in SLE progression is unclear. We aimed to investigate the impact of circadian rhythms on immune function and inflammation and their contribution to SLE progression to lupus nephritis (LN). METHODS: This study retrospectively analysed the clinical characteristics and transcriptional profiles of 373 samples using bioinformatics and machine-learning methods. A flare risk score (FRS) was established to predict overall disease progression for patients with lupus. Mendelian randomisation was used to analyse the causal relationship between CRD and SLE progression. RESULTS: Abnormalities in the circadian pathway were detected in patients with SLE, and lower enrichment levels suggested a disease state (normalised enrichment score=0.6714, p=0.0062). The disruption of circadian rhythms was found to be closely linked to lupus flares, with the FRS showing a strong ability to predict disease progression (area under the curve (AUC) of 5-year prediction: 0.76). The accuracy of disease prediction was improved by using a prognostic nomogram based on FRS (AUC=0.77). Additionally, Mendelian randomisation analysis revealed an inverse causal relationship between CRD and SLE (OR 0.6284 (95% CI 0.3630 to 1.0881), p=0.0485) and a positive causal relationship with glomerular disorders (OR 0.0337 (95% CI 1.634e-3 to 6.934e-1), p=0.0280). CONCLUSION: Our study reveals that genetic characteristics arising from CRD can serve as biomarkers for predicting the exacerbation of SLE. This highlights the crucial impact of CRD on the progression of lupus.


Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Humanos , Lúpus Eritematoso Sistêmico/complicações , Estudos Retrospectivos , Nefrite Lúpica/complicações , Inflamação , Progressão da Doença
3.
Nat Commun ; 15(1): 3425, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653984

RESUMO

While the monolayer sheet is well-established as a Mott-insulator with a finite energy gap, the insulating nature of bulk 1T-TaS2 crystals remains ambiguous due to their varying dimensionalities and alterable interlayer coupling. In this study, we present a unique approach to unlock the intertwined two-dimensional Mott-insulator and three-dimensional band-insulator states in bulk 1T-TaS2 crystals by structuring a laddering stack along the out-of-plane direction. Through modulating the interlayer coupling, the insulating nature can be switched between band-insulator and Mott-insulator mechanisms. Our findings demonstrate the duality of insulating nature in 1T-TaS2 crystals. By manipulating the translational degree of freedom in layered crystals, our discovery presents a promising strategy for exploring fascinating physics, independent of their dimensionality, thereby offering a "three-dimensional" control for the era of slidetronics.

4.
JACC Case Rep ; 29(6): 102253, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38549853

RESUMO

We present a unique case of left atrial (LA) dissection in a 46-year-old man following aortic dissection surgery. The LA dissection was attributed to coronary sinus catheter-related injury. This report highlights the importance of recognizing this rare complication and the crucial role of transesophageal echocardiography in its diagnosis. We discuss the pathogenesis, diagnostic criteria, and management strategies for LA dissection.

5.
Biochem Pharmacol ; 223: 116112, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38458331

RESUMO

Glioblastoma (GBM) is the most common malignant glioma among brain tumors with low survival rate and high recurrence rate. Columbianadin (CBN) has pharmacological properties such as anti-inflammatory, analgesic, thrombogenesis-inhibiting and anti-tumor effects. However, it remains unknown that the effect of CBN on GBM cells and its underlying molecular mechanisms. In the present study, we found that CBN inhibited the growth and proliferation of GBM cells in a dose-dependent manner. Subsequently, we found that CBN arrested the cell cycle in G0/G1 phase and induced the apoptosis of GBM cells. In addition, CBN also inhibited the migration and invasion of GBM cells. Mechanistically, we chose network pharmacology approach by screening intersecting genes through targets of CBN in anti-GBM, performing PPI network construction followed by GO analysis and KEGG analysis to screen potential candidate signaling pathway, and found that phosphatidylinositol 3-kinase/Protein Kinase-B (PI3K/Akt) signaling pathway was a potential target signaling pathway of CBN in anti-GBM. As expected, CBN treatment indeed inhibited the PI3K/Akt signaling pathway in GBM cells. Furthermore, YS-49, an agonist of PI3K/Akt signaling, partially restored the anti-GBM effect of CBN. Finally, we found that CBN inhibited GBM growth in an orthotopic mouse model of GBM through inhibiting PI3K/Akt signaling pathway. Together, these results suggest that CBN has an anti-GBM effect by suppressing PI3K/Akt signaling pathway, and is a promising drug for treating GBM effectively.


Assuntos
Cumarínicos , Glioblastoma , Proteínas Proto-Oncogênicas c-akt , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Glioblastoma/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Transdução de Sinais , Proliferação de Células
6.
J Proteome Res ; 23(4): 1174-1187, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38427982

RESUMO

Protein homeostasis is essential for cyanobacteria to maintain proper cellular function under adverse and fluctuating conditions. The AAA+ superfamily of proteolytic complexes in cyanobacteria plays a critical role in this process, including ClpXP, which comprises a hexameric ATPase ClpX and a tetradecameric peptidase ClpP. Despite the physiological effects of ClpX on growth and photosynthesis, its potential substrates and underlying mechanisms in cyanobacteria remain unknown. In this study, we employed a streptavidin-biotin affinity pull-down assay coupled with label-free proteome quantitation to analyze the interactome of ClpX in the model cyanobacterium Synechocystis sp. PCC 6803 (hereafter Synechocystis). We identified 503 proteins as potential ClpX-binding targets, many of which had novel interactions. These ClpX-binding targets were found to be involved in various biological processes, with particular enrichment in metabolic processes and photosynthesis. Using protein-protein docking, GST pull-down, and biolayer interferometry assays, we confirmed the direct association of ClpX with the photosynthetic proteins, ferredoxin-NADP+ oxidoreductase (FNR) and phycocyanin subunit (CpcA). Subsequent functional investigations revealed that ClpX participates in the maintenance of FNR homeostasis and functionality in Synechocystis grown under different light conditions. Overall, our study provides a comprehensive understanding of the extensive functions regulated by ClpX in cyanobacteria to maintain protein homeostasis and adapt to environmental challenges.


Assuntos
Fotossíntese , Synechocystis , Fotossíntese/genética , Synechocystis/genética , Synechocystis/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Ficocianina/metabolismo
7.
Environ Res ; 251(Pt 2): 118644, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38485074

RESUMO

Tetracycline hydrochloride (TC) accumulates in large quantities in the water environment, causing a serious threat to human health and ecological environment safety. This research focused on developing cost-effective catalysts with high 2e- selectivity for electro-Fenton (EF) technology, a green pollution treatment method. Defective nitrogen-doped porous carbon (d-NPC) was prepared using the metal-organic framework as the precursor to achieve in-situ H2O2 production and self-decomposition into high activity ·OH for degradation of TC combined with Co2+/Co3+. The d-NPC produced 172.1 mg L-1 H2O2 within 120 min, and could degrade 96.4% of TC in EF system. The self-doped defects and graphite-nitrogen in d-NPC improved the oxygen reduction performance and increased the H2O2 yield, while pyridine nitrogen could catalyze H2O2 to generate ·OH. The possible pathway of TC degradation was also proposed. In this study, defective carbon materials were prepared by ball milling, which provided a new strategy for efficient in-situ H2O2 production and the degradation of pollutants.

8.
Sci Rep ; 14(1): 7543, 2024 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555384

RESUMO

Lung cancer, specifically the histological subtype lung adenocarcinoma (LUAD), has the highest global occurrence and fatality rate. Extensive research has indicated that RNA alterations encompassing m6A, m5C, and m1A contribute actively to tumorigenesis, drug resistance, and immunotherapy responses in LUAD. Nevertheless, the absence of a dependable predictive model based on m6A/m5C/m1A-associated genes hinders accurately predicting the prognosis of patients diagnosed with LUAD. In this study, we collected patient data from The Cancer Genome Atlas (TCGA) and identified genes related to m6A/m5C/m1A modifications using the GeneCards database. The "ConsensusClusterPlus" R package was used to produce molecular subtypes by utilizing genes relevant to m6A/m5C/m1A identified through differential expression and univariate Cox analyses. An independent prognostic factor was identified by constructing a prognostic signature comprising six genes (SNHG12, PABPC1, IGF2BP1, FOXM1, CBFA2T3, and CASC8). Poor overall survival and elevated expression of human leukocyte antigens and immune checkpoints were correlated with higher risk scores. We examined the associations between the sets of genes regulated by m6A/m5C/m1A and the risk model, as well as the immune cell infiltration, using algorithms such as ESTIMATE, CIBERSORT, TIMER, ssGSEA, and exclusion (TIDE). Moreover, we compared tumor stemness indices (TSIs) by considering the molecular subtypes related to m6A/m5C/m1A and risk signatures. Analyses were performed based on the risk signature, including stratification, somatic mutation analysis, nomogram construction, chemotherapeutic response prediction, and small-molecule drug prediction. In summary, we developed a prognostic signature consisting of six genes that have the potential for prognostication in patients with LUAD and the design of personalized treatments that could provide new versions of personalized management for these patients.


Assuntos
Adenina/análogos & derivados , Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Prognóstico , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/genética , Nomogramas
9.
Artigo em Inglês | MEDLINE | ID: mdl-38479723

RESUMO

BACKGROUND: Anatomic and reverse total shoulder arthroplasty (TSA) are effective treatment options for end-stage glenohumeral osteoarthritis. However, consideration for pre-existing conditions must be taken into account. Factor V Leiden (FVL), the most common inherited thrombophilia, is one such condition that predisposes to a prothrombotic state and may affect perioperative and longer-term outcomes following TSA. METHODS: Adult patients undergoing primary TSA for osteoarthritis indication were identified in the 2010 through October 2021 PearlDiver M157 database. Patients with or without FVL were matched at a 1:4 ratio based on age, sex, and Elixhauser Comorbidity Index. Ninety-day adverse events and five-year revision rates were assessed and compared with multivariable logistic regression and rank-log tests, respectively. Finally, the relative use and bleeding/clotting outcomes were assessed based on venous thromboembolic (VTE) prophylactic agents utilized, with categories defined as (1) warfarin, heparin, or direct oral anticoagulant (DOAC) or (2) aspirin/no prescriptions found. RESULTS: Of 104,258 TSA patients, FVL was identified for 283 (0.27%). Based on matching, 1,081 patients without FVL and 272 patients with FVL were selected. Multivariable analyses demonstrated that those with FVL displayed independently greater odds ratios (ORs) of deep vein thrombosis (DVT, OR=9.50, p<0.0001), pulmonary embolism (PE, OR = 10.10, p<0.0001), and pneumonia (OR=2.43, p=0.0019). Further, these events contributed to the increased odds of aggregated minor (OR = 1.95, p=0.0001), serious (OR=6.38, p<0.0001), and all (OR=3.51, p<0.0001) adverse events. All other individual 90-day adverse events, as well as 5-year revision rates, were not different between the study groups. When compared to matched patients without FVL on the same anticoagulant agents, FVL patients on warfarin/heparin/DOAC agents demonstrated lesser odds of 90-day DVT and PE (OR=4.25, p<0.0001 and OR=2.54, p=0.0065) than those on aspirin/no prescriptions found (OR=7.64 and OR=21.95, p<0.0001 for both). Interestingly, those on VTE prophylactic agents were not at greater odds of bleeding complications (hematoma or transfusion). DISCUSSION AND CONCLUSIONS: TSA patients with FVL present a difficult challenge to shoulder reconstruction surgeons. The current study highlights the strong risk of VTE that was reduced but still significantly elevated for those with stronger classes of VTE chemoprophylaxis. Acknowledging this risk is important for surgical planning and patient counseling, but also noted was the reassurance of similar 5-year revision rates for those with versus without FVL.

10.
Biomed Eng Online ; 23(1): 32, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475784

RESUMO

PURPOSE: This study aimed to investigate the imaging repeatability of self-service fundus photography compared to traditional fundus photography performed by experienced operators. DESIGN: Prospective cross-sectional study. METHODS: In a community-based eye diseases screening site, we recruited 65 eyes (65 participants) from the resident population of Shanghai, China. All participants were devoid of cataract or any other conditions that could potentially compromise the quality of fundus imaging. Participants were categorized into fully self-service fundus photography or traditional fundus photography group. Image quantitative analysis software was used to extract clinically relevant indicators from the fundus images. Finally, a statistical analysis was performed to depict the imaging repeatability of fully self-service fundus photography. RESULTS: There was no statistical difference in the absolute differences, or the extents of variation of the indicators between the two groups. The extents of variation of all the measurement indicators, with the exception of the optic cup area, were below 10% in both groups. The Bland-Altman plots and multivariate analysis results were consistent with results mentioned above. CONCLUSIONS: The image repeatability of fully self-service fundus photography is comparable to that of traditional fundus photography performed by professionals, demonstrating promise in large-scale eye disease screening programs.


Assuntos
Serviços de Saúde Comunitária , Glaucoma , Humanos , Estudos Transversais , Estudos Prospectivos , China , Fotografação/métodos , Fundo de Olho
11.
ACS Omega ; 9(7): 7658-7667, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38405435

RESUMO

An efficient and noninvasive method of sensing lung cancer at an early stage is through detecting its biomarkers in the patient's exhaled breath. Acetone (C3H6O), benzene (C6H6), and isoprene (C5H8) emerged as crucial biomarkers, which were significantly elevated in lung cancer patients. Here, we investigated the adsorption behaviors of the three gas molecules on pristine and transition metal (TM)-doped (Au and Pd) SnS2 monolayers using the density functional theory (DFT) method. Our findings indicate that both Au- and Pd-doped SnS2 display higher adsorption energies (-0.53 to -1.313 eV) than that of the pure SnS2 monolayer (0.031 to 0.066 eV). Specifically, Pd-SnS2 exhibits smaller adsorption energy compared to that of Au-SnS2 when capturing C3H6O, C6H6, and C5H8. The estimated recovery times for Pd-SnS2 (8.016 × 10-4 to 16.02 s) are shorter compared to those of Au-SnS2 (1.11 to 1.14 × 1010 s), indicating the superior capability of Pd-SnS2 over Au-SnS2 as a reversible sensor. Afterward, calculations of band structure, projected density of states (PDOS), and charge transfer were performed, which further substantiates the more promising potentials for Pd-doped SnS2 monolayer as gas sensors over the others. Overall, our results suggest that Pd-SnS2 is a better candidate for C3H6O, C6H6, and C5H8 detection over Au-SnS2 and pristine SnS2.

12.
bioRxiv ; 2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38405813

RESUMO

Chronic pain is a significant public health issue. Current treatments have limited efficacy and significant side effects, warranting research on alternative strategies for pain management. One approach involves using small extracellular vesicles (sEVs) to transport beneficial biomolecular cargo to aid pain resolution. Exosomes are 30-150 nm sEVs that can carry RNAs, proteins, and lipid mediators to recipient cells via circulation. Exosomes can be beneficial or harmful depending on their source and contents. To investigate the short and long-term effects of mouse serum-derived sEVs in pain modulation, sEVs from naïve control or spared nerve injury (SNI) model donor mice were injected intrathecally into naïve recipient mice. Basal mechanical thresholds transiently increased in recipient mice. This effect was mediated by opioid signaling as this outcome was blocked by naltrexone. Mass Spectrometry of sEVs detected endogenous opioid peptide leu-enkephalin. A single prophylactic intrathecal injection of sEVs two weeks prior to induction of the pain model in recipient mice delayed mechanical allodynia in SNI model mice and accelerated recovery from inflammatory pain after complete Freund's adjuvant (CFA) injection. ChipCytometry of spinal cord and dorsal root ganglion (DRG) from sEV treated mice showed that prophylactic sEV treatment reduced the number of natural killer (NK) and NKT cells in spinal cord and increased CD206+ anti-inflammatory macrophages in (DRG) after CFA injection. Further characterization of sEVs showed the presence of immune markers suggesting that sEVs can exert immunomodulatory effects in recipient mice to promote the resolution of inflammatory pain. Collectively, these studies demonstrate multiple mechanisms by which sEVs can attenuate pain.

13.
Animals (Basel) ; 14(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38396614

RESUMO

Purebred Bamei piglets present problems, including slow growth, respiratory disease, and post-weaning stress. This study investigated the effects of Lactobacillus plantarum QP28-1- and Bacillus subtilis QB8-fermented feed supplementation on the growth performance, immunity, and intestinal microflora of Bamei piglets from Qinghai, China. A total of 48 purebred Bamei piglets (25 days; 6.8 ± 0.97 kg) were divided into the following four groups for a 28-day diet experiment: basal feed (CK); diet containing 10% Lactobacillus plantarum-fermented feed (L); diet containing 10% Bacillus subtilis-fermented feed (B); and diet containing a mixture of 5% Lactobacillus plantarum + 5% Bacillus subtilis-fermented feed (H). The daily weight gain and daily food intake of group H increased (p < 0.05), and the feed/weight gain ratios of the groups fed with fermented feed decreased more than that of the CK group. The levels of three immune factors, namely immunoglobulin (Ig)M, IgG, and interferon-γ, were higher (p < 0.05), whereas those of tumor necrosis factor-α, interleukin (IL)-1ß, and IL-6 were lower (p < 0.05) in the fermented feed groups than in the CK group. Total protein was higher (p < 0.05), while urea nitrogen, total cholesterol and triglycerides were lower (p < 0.05) in the mixed-fermented feed group than in the CK group. Analysis of the gut microbiota showed that the addition of fermented feed increased the α-diversity of the gut microbiota, increasing the abundances of probiotics including Lactobacillus, Muribaculaceae, Ruminococcaceae, Prevotellaceae, and Rikenellaceae. Additionally, correlation analysis demonstrated that several of these probiotic bacteria were closely related to serum immunity. In conclusion, fermented feed supplementation rebuilt the intestinal microbiota of Bamei piglets, thereby reducing the feed/weight ratio, improving feed intake, and enhancing immunity.

14.
Environ Res ; 249: 118362, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38325787

RESUMO

Sulfate radical-based advanced oxidation processes with (SR-AOPs) are widely employed to degrade organic pollutants due to their high efficiency, cost-effectiveness and safety. In this study, a highly active and stable FeNiP was successfully prepared by reduction and heat treatment. FeNiP exhibited high performance of peroxymonosulfate (PMS) activation for tetracycline hydrochloride (TC) removal. Over a wide pH range, an impressive TC degaradation efficiency 97.86% was achieved within 60 min employing 0.1 g/L FeNiP and 0.2 g/L PMS at room temperature. Both free radicals of SO4·-, ·OH, ·O2- and non-free radicals of 1O2 participated the TC degradation in the FeNiP/PMS system. The PMS activation ability was greatly enhanced by the cycling between Ni and Fe bimetal, and the active site regeneration was achieved due to the existence of the negatively charged Pn-. Moreover, the FeNiP/PMS system exhibited substantial TC degradation levels in both simulated real-world disturbance scenarios and practical water tests. Cycling experiments further affirmed the robust stability of FeNiP catalyst, demonstrating sustained degradation efficiency of approximately 80% even after four cycles. These findings illuminate its promising potential across natural water bodies, presenting an innovative catalyst construction approach for PMS activation in the degradation of antibiotic pollutants.

15.
J Mater Chem B ; 12(10): 2547-2558, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38358131

RESUMO

Monitoring active membrane cholesterol and lipid raft cholesterol in the inner leaflet of the plasma membrane is significant for understanding the membrane function and cellular physiopathological processes. Limited by existing methods, it is difficult to differentiate active membrane cholesterol and lipid raft cholesterol. A novel dual-monomer solvatochromic probe system (DSPS) that targets two types of cholesterol was developed. Acrylodan-BG/SNAP-D4 composed of SNAP-D4 cholesterol-recognizing monomers and solvatochromic acrylodan-BG-sensing monomers exhibits excellent cholesterol detecting properties in terms of selectivity, accuracy, convenience and economic benefits. Cell imaging revealed that lipid raft cholesterol emitted blue fluorescence, whereas active membrane cholesterol (which partially bobbed in aqueous cytosol) displayed green fluorescence; both the fluorescence emissions increased or decreased in a cholesterol-dependent manner. This system provides a new technology for the determination of two types of cholesterol, which is beneficial for the further study of membrane function, intracellular cholesterol trafficking, and cell signaling.


Assuntos
2-Naftilamina/análogos & derivados , Colesterol , Microdomínios da Membrana , Membrana Celular/metabolismo , Colesterol/metabolismo , Microdomínios da Membrana/metabolismo
16.
ACS Omega ; 9(6): 7269, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38371812

RESUMO

[This corrects the article DOI: 10.1021/acsomega.3c04101.].

17.
Eur J Pharmacol ; 968: 176401, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38331340

RESUMO

Glioblastoma (GBM) is one of the most common intracranial primary malignancies with the highest mortality rate, and there is a lack of effective treatments. In this study, we examined the anti-GBM activity of Tenacissoside H (TH), an active component isolated from the traditional Chinese medicine Marsdenia tenacissima (Roxb.) Wight & Arn (MT), and investigated the potential mechanism. Firstly, we found that TH decreased the viability of GBM cells by inducing cell cycle arrest and apoptosis, and inhibited the migration of GBM cells. Furthermore, combined with the Gene Expression Omnibus database (GEO) and network pharmacology as well as molecular docking, TH was shown to inhibit GBM progression by directly regulating the PI3K/Akt/mTOR pathway, which was further validated in vitro. In addition, the selective PI3K agonist 740 y-p partially restored the inhibitory effects of TH on GBM cells. Finally, TH inhibited GBM progression in an orthotopic transplantation model by inactivating the PI3K/Akt/mTOR pathway in vivo. Conclusively, our results suggest that TH represses GBM progression by inhibiting the PI3K/Akt/mTOR signaling pathway in vitro and in vivo, and provides new insight for the treatment of GBM patients.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Neoplasias Encefálicas/genética , Proliferação de Células
18.
ACS Omega ; 9(1): 252-263, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38222523

RESUMO

Supercritical cyclohexane (SC-cyclohexane) shows significant advantages in mild operating conditions and the modulation of product distribution. To gain insights into the upgrading process of heavy oil in SC-cyclohexane, the dissolution process of polycyclic aromatic hydrocarbons (PAHs) contained in heavy oil was simulated based on molecular dynamics with the use of naphthalene, benzopyrene, and mixtures of naphthalene and benzopyrene as the model compounds. As indicated by the radial distribution function results, in SC-cyclohexane exhibiting low density, cyclohexane formed a solvent shell around PAHs such that the local concentration was reduced and the aggregation of PAHs was inhibited. The results of the solvation free energy suggested that van der Waals forces between PAHs and cyclohexane were mainly dominant. As revealed by the dissolution process of the model compounds in SC-cyclohexane, a low density and a suitable temperature contributed to the solubilization of PAHs. An appropriate temperature and a low density can be selected for the upgrading reaction to limit coke formation.

19.
BMC Health Serv Res ; 24(1): 23, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178099

RESUMO

OBJECTIVE: The outbreak of the COVID-19 pandemic has drawn attention from all sectors of society to the level of public health services. This study aims to investigate the level of public health service supply in the four major regions of Guangdong Province, providing a basis for optimizing health resource allocation. METHODS: This article uses the entropy method and panel data of 21 prefecture-level cities in Guangdong Province from 2005 to 2021 to construct the evaluation index system of public health service supply and calculate its supply index. On this basis, the standard deviation ellipse method, kernel density estimation, and Markov chain are used to analyze the spatiotemporal evolution trend of the public health service supply level in Guangdong Province. The Dagum Gini coefficient and panel regression model are further used to analyze the relative differences and the key influencing factors of difference formation. Finally, the threshold effect model is used to explore the action mechanism of the key factors. RESULTS: Overall, the level of public health service supply in Guangdong Province is on an upward trend. Among them, polarization and gradient effects are observed in the Pearl River Delta and Eastern Guangdong regions; the balance of public health service supply in Western Guangdong and Northern Mountainous areas has improved. During the observation period, the level of public health services in Guangdong Province shifted towards a higher level with a smaller probability of leapfrogging transition, and regions with a high level of supply demonstrated a positive spillover effect. The overall difference, intra-regional difference and inter-regional difference in the level of public health service supply in Guangdong Province during the observation period showed different evolutionary trends, and spatial differences still exist. These differences are more significantly positively affected by factors such as the level of regional economic development, the degree of fiscal decentralization, and the urbanization rate. Under different economic development threshold values, the degree of fiscal decentralization and urbanization rate both have a double threshold effect on the role of public health service supply level. CONCLUSION: The overall level of public health service supply in Guangdong Province has improved, but spatial differences still exist. Key factors influencing these differences include the level of regional economic development, the degree of fiscal decentralization, and the urbanization rate, all of which exhibit threshold effects. It is suggested that, in view of the actual situation of each region, efforts should be made to build and maintain their own advantages, enhance the spatial linkage of public health service supply, and consider the threshold effects of key factors in order to optimize the allocation of health resources.


Assuntos
Pandemias , Urbanização , Humanos , China/epidemiologia , Cidades , Serviços de Saúde
20.
ACS Omega ; 9(3): 3772-3780, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38284013

RESUMO

In recent years, carbon capture and utilization (CCU) has been explored as an attractive solution to global warming, which is mainly caused by increasing CO2 emission levels. Many functional materials have been developed for removing atmospheric CO2 and converting it to more useful forms of carbon. Traditional metallic photocatalytic species have drawbacks-photocorrosion, low visible-light absorbance, and environmental damage; therefore, metal-free materials have attracted considerable research attention. In particular, boron nitride (BN) possesses unique B-N bonds, characterized by a large difference in the electronegativity of atoms that facilitates CO2 reduction, and catalytic CO2 reduction by boron carbon nitride (BCN) has been demonstrated under visible light; hence, these two materials can be considered potential CO2 reduction photocatalysts. However, further modification of the materials and their applicability to other CCU applications have not been extensively explored. Therefore, we decided to investigate the modification of BCN monolayers, with the aim of ensuring that the properties of the materials are better suited, first, to the requirements of CO2 photocatalysis, and second, to those of carbon capture or other optoelectronic applications. In this study, we considered various novel BCN monolayers, based on modification via metal-free substitutional doping and nitrogen vacancy creation, and performed first-principles density functional theory calculations. The effects of the modifications on band gap tuning, charge transfer, and the CO2 adsorption ability were all studied. Specifically, ON-B13C8N11 and SiC-2 × 2-BC6N were shown to possess excellent properties for photocatalytic CO2 reduction, and OC-2 × 2-BC6N and Nv-4 × 4-BN can be considered for future CO2 capture materials. These results contribute to existing CCU approaches, suggesting that BCN monolayer modification merits further investigation, and offering insights relevant to other photocatalytic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...